Oracle Database 10g: SQL and PL/SQL New Features NEW
Kontakt na dodavatele získáte po registraci
Tento kurz je pořádán dodavatelem, který nevyužívá placenou prezentaci na portálu eu-dat.cz. Kontaktní údaje na dodavatele získáte po registraci. Nebo použijte poptávkový formulář.
Popis kurzu na míru Oracle Database 10g: SQL and PL/SQL New Features NEW
Co se naučíte
In this course, students learn about the new binary-float data types enhancements in Oracle Database 10g. Students also identify the new Large Objects (LOB) enhancements. Students learn the new enhancements to nested collections, table functions, versioning of rows, the flashback feature, and many other SQL enhancements. Participants learn how to use regular expressions to search for and manipulate simple and complex patterns in string data.
Increase productivity, increase return of investment and extend the functionality of your already feature-rich database. Students use the new PL/SQL compiler initialization parameters, use conditional compilation, hide PL/SQL source code using dynamic obfuscation, and identify the new enhancements in bulk binding. Students also use the SQL Model clause to perform spreadsheet like calculations. Finally, some aspects of SQL for data warehousing are covered. Students learn the enhancements made to the MERGE statement and they learn how to use the time series enhancements in SQL retrieval statements. Demonstrations and hands-on practices reinforce the concepts and new features presented.
Posluchači Application Developers Business Intelligence Developer Data Warehouse Developer Developer Functional Implementer PL/SQL Developer Support Engineer System Analysts
Předpoklady Oracle 9i or earlier RDBMS SQL and PL/SQL Knowledge SQL*Plus or iSQL*Plus tools
Cíle kurzu Use the Oracle data types and data enhanced data types Identify the Large Objects (LOB) enhancements Write code that uses the nested table and VARRAY enhancements Identify and use the SQL enhancements Use Regular Expressions to search for and manipulate complex patterns in string data Perform a case-insensitive or accent-insensitive linguistic sort using NLS_SORT Perform a linguistic comparison using NLS_COMP Identifying the New PL/SQL Compilation Initialization Parameters Setting and using the New PL/SQL Compile Time Warnings for Subprograms Use conditional compilation Obfuscate PL/SQL source code Use the SQL model clause Use Analytic Functions in the SQL model clause Use SQL enhancements for Data Warehousing Cleanse data using the DELETE clause Densify data with partitioned outer joins
Témata kurzu
Using Oracle Database 10g Data Types Working with the New BINARY_FLOAT and BINARY_DOUBLE Numeric Data Types The Floating-Point Special Values Using Comparison Operations on Binary-Floats Using the Floating-Point Literals Using the Floating-Point Functions Using Conversion Operations on Binary-Floats Examining Binary-Float Performance Supporting NCHAR String Literals
Using Large Objects (LOB) Enhancements Identifying the Large Objects Enhancements Migrating from LONG to LOB Using the DBMS_LOB Package Initializing, Populating, and Removing LOB Columns Selecting CLOB Values by Using SQL and DBMS_LOB Conversion Between CLOB and NCLOB Data Interface for LOBs in Abstract Data Types and Remote LOBs Support for LOB Array Read and Write
Using Nested Table and VARRAY Enhancements Collections: Overview Adjusting the Size of an Element Type Using the VARRAY LIMIT Size Using VARRAY Columns in Temporary Tables Changing a Nested Table's Storage Tablespace ANSI Support for Nested Tables Introducing the Multiset Operators
Using General SQL Enhancements Introducing the VERSIONS Clause Using the Row Versions Feature Using Flashback Query Introducing the FLASHBACK TABLE and FLASHBACK DATABASE Statements Overview of Table Functions Understanding the Enhanced ODCI Functions Using Alternative Quotes Using the DROP TABLE ... PURGE statement
Using Regular Expressions and Linguistic Sort and Comparison Using Regular Expressions Functions, Conditions, and Meta Characters in SQL and PL/SQL Performing a Basic Search Using the REGEXP_LIKE Condition Finding Patterns Using the REGEXP_INSTR Function Extracting Sub-strings Using the REGEXP_SUBSTR Function Replacing Patterns Using the REGEXP_REPLACE Function Performing a Case-Insensitive or Accent-Insensitive Linguistic Sort Using NLS_SORT Performing a Linguistic Comparison Using the NLS_COMP Initialization Parameter The NLSSORT Function: Case Insensitive and Accent Insensitive Support
Using the New PL/SQL Compiler Identifying the New Initialization Parameters for PL/SQL Compilation Using the New PL/SQL Compile Time Warnings for Subprograms Setting the Warning Messages Levels Using the PLSQL_WARNINGS initialization parameter Setting the Warning Messages Levels Using the DBMS_WARNING Package Subprograms Viewing the Current Setting of PLSQL_WARNINGS Using SQL*Plus Viewing the Current Setting of PLSQL_WARNINGS Using the Data Dictionary Views Guidelines for Using PLSQL_WARNINGS Viewing the Current Setting of PLSQL_WARNINGS Using the Data Dictionary Views
Programming with PL/SQL Enhancements Using Conditional Compilation Using the Selection, Inquiry, and Error Directives Displaying the PLSQL_CCFLAGS Setting Identifying the Database Version and Release Using the DBMS_DB_VERSION Package Boolean Constants Using the DBMS_PREPROCESSOR Procedures to Print or Retrieve the PL/SQL Post-Processed Source Text Obfuscating (hiding) PL/SQL Source Code Bulk Binding: FORALL Support for Sparse Collections and Index Array Maintaining Valid PL/SQL Program Units and Views
Using the SQL Model Clause Learning the Concepts and Reviewing the Sample Data Using Cell and Range References Using the CV() Function Using the FOR Construct Using Analytic Functions in the SQL Model Clause Using the UPDATE, UPSERT, and UPSERT ALL Options Nested Cell References and Reference Models Cyclic Rules in Models, Cycles, and Simultaneous Equations
Using SQL Enhancements for Data Warehousing MERGE Improvements and Extensions Using Conditional Updates Cleansing Data Using the DELETE Clause Densifying Data with Partitioned Outer Joins Repeating Data Values to Fill Gaps Computing Data Values to Fill Gaps Time Series Calculations on Densified Data Period-to-Period Comparison of One Time Level